PH2

Question		n	Marking details	Marks Available
1	(a)	(i) (ii)	Longitudinal waves: Directions of [particle or molecule or air] oscillations and direction of travel of wave [or energy] [NB not particles travelling](1) are parallel [or parallel / antiparallel or the same] (1) [Independent marks] Wavelength: [Shortest] distance [along the direction of propagation] between air layers [or particles or molecules or points] oscillating in phase () or distance between [the centre of successive] compressions [or rarefactions]. [NB not 'peaks' and 'troughs']	2
	(b)	(i) (ii)	Interference between [or superposition of] [progressive] waves (1) travelling <u>in opposite directions</u> . (1) [Not 'constructive' or 'destructive' interference only] N.B. Working must be shown. $\lambda = 0.44 \text{ m (1)}$ $v = f\lambda$ correctly applied (1) [or $v = \lambda/T$ correctly applied] $v = 330 \text{ m s}^{-1}$ ((unit)) (1) [Correct answer only $\rightarrow 1 \text{ mark}$]	2
		(iii)	[No ecf unless wrong answer commented upon!] $\frac{\lambda}{2} = 3.3 \text{ m or } \lambda = 6.6 \text{ m (1)}$. So nodes must be further apart than 2 m	2
			[or equiv] (1) [ecf from incorrect v]	[10]
2	(a)	(i) (ii)	$v_{\rm air} > v_{\rm glass}(1), \ f_{\rm air} = f_{\rm glass} \ {\bf and} \ \lambda_{\rm air} > \lambda_{\rm glass}(1)$ Cycles [or oscillation] can't appear or disappear [at boundary] or equiv. / frequency determined by the source [not just f is constant]	2
	(b)	(ii) (iii)	[1.00] $\sin 40^\circ = 1.52 \sin \phi$ [where $\phi = \text{angle of refraction}$] (1) $\phi = 25^\circ$ (1); $\theta = 90^\circ - 25^\circ$ (1) = [65°] $\sin c = \frac{1}{1.52}$ [or equiv] $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" $c = 41^\circ$ (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\cos^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (1), so refraction not possible (1) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (2) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (2) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (2) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (3) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (4) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (4) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (5) $\sin^{-1}(1.52 \sin 65^\circ)$ gives "error" (6) $\sin^{-1}(1.52 \sin 65^$	2 1 2
			 cuts down range of path lengths (✓) less pulse broadening or less likelihood of overlapping or more rapid data [allow: smearing and jumbling] sequence possible (✓) [not interfere or distorted] 	2 [13]

Question			Marking details	Marks Available
3	(a)		Electrons are emitted [from tin] (1). Electrons are negatively charged [or plate originally neutral] or electrons knocked out by photons (1) Plate left with a positive charge (1)	3
	(b)	(i) (ii) (iii)	Work function: [Minimum] energy [or work] needed for an electron to escape [from metal surface] $hf_{\text{min}} = \phi$ [or by impl.] or $0 = 6.63 \times 10^{-34} f_{\text{min}} - 7.1 \times 10^{-19}$ (1) $f_{\text{min}} = 1.07 \times 10^{15} \text{ Hz (1)}$ $1.5 \times 10^{-19} = hf - 7.1 \times 10^{-19}$ [or equiv. or by impl.] (1)	1 2
	(c)	(i)	$f = 1.3 \times 10^{15} \text{ Hz (1)}$ $\text{number per second} = \frac{0.64 \times 10^{-6} [\text{C s}^{-1}]}{1.6 \times 10^{-19} [\text{C}]}$	2
		(ii)	Number of photons per second = $4.0 \times 10^{12} \times 1200$ Multiplication by 1200 at any stage [or by impl.](1) Photon energy = 8.6×10^{-19} J [or by impl.] (1) UV energy per second = $4.1 \text{ m}(1)\text{W}(1)$ [4.1×10^{-3} J s ⁻¹ $\checkmark\checkmark$]	4 [13]
4	(a)	(i) (ii)	Ground state to level T labelled I or <i>pumping</i> (1) Level U to level L labelled II or <i>stimulated emission</i> (1) $E_{\text{phot}} = \frac{hc}{\lambda} \left[\text{or } E_{\text{phot}} = hf \text{ and } f = \frac{c}{\lambda} \right] \left[\text{or by impl.} \right] (1)$	2
		(iii)	$E_{\rm phot}$ =1.9[0] × 10 ⁻¹⁹ J (1) Energy of level U =2.2 × 10 ⁻¹⁹ J (1) I. [Stimulated emission is triggered by an incident] photon (1) with energy 1.9 × 10 ⁻¹⁹ J [ecf but not 2.2 × 10 ⁻¹⁹] or equal to the difference between levels U and L (1) [no ecf from incorrect	3
		(iv)	 identification of transition in (a)(i) II. Photon emitted together with the original photon [accept: there are now 2 photons where there was previously 1; also accept correct answer given in I.] III. Stimulated photon and incident photon in phase. Promotes population inversion [between levels U and L] (1) 	2 1 1
	<i>a</i>)	(14)	Either less pumping needed, or population inversion needed so that stimulated emission predominates over absorption (1)	2
	(b)		Less energy input needed for a given [light] energy output (1) [or more efficient]	1 [12]

Question			Marking details	Marks Available
5	(a)	(i)	Diffraction [Stir with much] greater then the manufactor of (1)	1
		(ii) (iii)	[Slit width much] greater than the wavelength (1) [Angular] spread [of central maximum] is small. (1) [Width of] spread decreases (1) [accept: less diffraction]	2
		()	Peak intensity increases (1)[or intensity increases because more light is let through].	2
	(b)	(i)	1.25 mm	1
		(ii)	Use of $\lambda = \frac{ay}{D}$ with symbols correctly interpreted (1)	
		(;;;)	$\lambda = 625 \text{ nm [ecf on } y] (1)$	2
		(iii)	When path difference is a whole number of wavelengths [not just: path difference = 0] (1), waves from the slits <u>arrive</u> [or equiv.] in phase (1) and interfere constructively (1)	3
		(iv)	Less light diffracted at greater angles / intensity envelope the same as the diffraction graph.	1
	(c)		 Any 2 × (1) from: Light from laser may be brighter ✓ [not just collimated] Light from laser coherent / no need for single slit / light source need not be distant ✓ 	
			• light [more nearly] monochromatic ✓	2
				[14]

Question		n	Marking details	Marks Available	
6	(a)	(i) (ii)	Quark-antiquark combination [or equiv.] Only ud combination [in the 1 st generation] gives a charge of +e	1	
			[or $\frac{2}{3} + \frac{1}{3} = 1$]	1	
	(b)	(i)	I. $[ud + uud + udd \rightarrow uud + uud]$ u numbers: LHS = 4; RHS = 4, so conserved	1	
		(ii)	 II. d numbers: LHS = 2; RHS = 2, so conserved Strong force (1) Any 1 × (1) of: high energies' suggests strong ✓ separate conservation of u and d ✓ no neutrino / lepton involvement ✓ quark regrouping / only quarks involved ✓ 	2	
	(c)	(i)	Any intelligible method [e.g. baryon and charge conservation or u and d numbers conservation, or quark counting to give 9u+9d in X, or comparison with equation in (b) noting that $\pi^+ + n \rightarrow p$] (1) [or by impl.]		
		(ii)	A = 6 and Z = 3 (1) Proton number / atomic number [accept: chemical element]	2 1	
				[11]	
7	(a)	(i)	$T = \frac{W}{260 \times 10^{-9}} (1 - \text{trans}) \text{ [or by impl.][allow this mark even if } 10^{-9}$ omitted]		
		(ii)	= 11 × 10 ³ K (1) ((unit)) Black body [accept: non-reflecting surface / radiates <u>equally</u> in all directions]	2	
	(b)		Radius is \times 70 so area is \times 70 ² [or equiv, or by impl.] (1) Temperature is \times 2, so T^4 is 2 ⁴ [or equiv. or by impl.] (1) [So] Power is \times 80 000 (1)	3	
	(c)		Absorption [by atoms in the stellar atmosphere or in interstellar gas] of specific wavelengths from the star's continuous spectrum [or from star's radiation / star's light] (1) Any 2 × (1) from:		
			 • because photons of specific <u>energy</u> abso rbed ✓ • Photon energies correspond to transitions between [atoms'] energy levels ✓ 		
			Absorbed radiation re-emitted but in all directions ✓	3	
				[9]	